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3.2 Determinants and Matrix Inverses

In this section, several theorems about determinants are derived. One consequence of these theorems
is that a square matrix A is invertible if and only if det A 6= 0. Moreover, determinants are used to
give a formula for A−1 which, in turn, yields a formula (called Cramer’s rule) for the solution of any
system of linear equations with an invertible coefficient matrix.

We begin with a remarkable theorem (due to Cauchy in 1812) about the determinant of a
product of matrices. The proof is given at the end of this section.

Theorem 3.2.1: Product Theorem
If A and B are n×n matrices, then det (AB) = det A det B.

The complexity of matrix multiplication makes the product theorem quite unexpected. Here is
an example where it reveals an important numerical identity.

Example 3.2.1

If A =

[
a b

−b a

]
and B =

[
c d

−d c

]
then AB =

[
ac−bd ad +bc

−(ad +bc) ac−bd

]
.

Hence det A det B = det (AB) gives the identity

(a2 +b2)(c2 +d2) = (ac−bd)2 +(ad +bc)2

Theorem 3.2.1 extends easily to det (ABC) = det A det B det C. In fact, induction gives

det (A1A2 · · ·Ak−1Ak) = det A1 det A2 · · · det Ak−1 det Ak

for any square matrices A1, . . . , Ak of the same size. In particular, if each Ai = A, we obtain

det (Ak) = (detA)k, for any k ≥ 1

We can now give the invertibility condition.

Theorem 3.2.2
An n×n matrix A is invertible if and only if det A 6= 0. When this is the case,
det (A−1) = 1

det A

Proof. If A is invertible, then AA−1 = I; so the product theorem gives

1 = det I = det (AA−1) = det A det A−1

Hence, det A 6= 0 and also det A−1 = 1
det A .
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Conversely, if det A 6= 0, we show that A can be carried to I by elementary row operations
(and invoke Theorem 2.4.5). Certainly, A can be carried to its reduced row-echelon form R, so
R = Ek · · ·E2E1A where the Ei are elementary matrices (Theorem 2.5.1). Hence the product theorem
gives

det R = det Ek · · · det E2 det E1 det A

Since det E 6= 0 for all elementary matrices E, this shows det R 6= 0. In particular, R has no row of
zeros, so R = I because R is square and reduced row-echelon. This is what we wanted.

Example 3.2.2

For which values of c does A =

 1 0 −c
−1 3 1

0 2c −4

 have an inverse?

Solution. Compute det A by first adding c times column 1 to column 3 and then expanding
along row 1.

det A = det

 1 0 −c
−1 3 1

0 2c −4

= det

 1 0 0
−1 3 1− c

0 2c −4

= 2(c+2)(c−3)

Hence, det A = 0 if c =−2 or c = 3, and A has an inverse if c 6=−2 and c 6= 3.

Example 3.2.3

If a product A1A2 · · ·Ak of square matrices is invertible, show that each Ai is invertible.

Solution. We have det A1 det A2 · · · det Ak = det (A1A2 · · ·Ak) by the product theorem, and
det (A1A2 · · ·Ak) 6= 0 by Theorem 3.2.2 because A1A2 · · ·Ak is invertible. Hence

det A1 det A2 · · · det Ak 6= 0

so det Ai 6= 0 for each i. This shows that each Ai is invertible, again by Theorem 3.2.2.

Theorem 3.2.3
If A is any square matrix, det AT = det A.

Proof. Consider first the case of an elementary matrix E. If E is of type I or II, then ET = E; so
certainly det ET = det E. If E is of type III, then ET is also of type III; so det ET = 1 = det E by
Theorem 3.1.2. Hence, det ET = det E for every elementary matrix E.

Now let A be any square matrix. If A is not invertible, then neither is AT ; so det AT = 0 = det A
by Theorem 3.2.2. On the other hand, if A is invertible, then A = Ek · · ·E2E1, where the Ei are
elementary matrices (Theorem 2.5.2). Hence, AT = ET

1 ET
2 · · ·ET

k so the product theorem gives
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det AT = det ET
1 det ET

2 · · · det ET
k = det E1 det E2 · · · det Ek

= det Ek · · · det E2 det E1

= det A

This completes the proof.

Example 3.2.4

If det A = 2 and det B = 5, calculate det (A3B−1AT B2).

Solution. We use several of the facts just derived.

det (A3B−1AT B2) = det (A3) det (B−1) det (AT ) det (B2)

= (det A)3 1
det B det A(det B)2

= 23 · 1
5 ·2 ·5

2

= 80

Example 3.2.5

A square matrix is called orthogonal if A−1 = AT . What are the possible values of det A if
A is orthogonal?

Solution. If A is orthogonal, we have I = AAT . Take determinants to obtain

1 = det I = det (AAT ) = det A det AT = (det A)2

Since det A is a number, this means det A =±1.

Hence Theorems 2.6.4 and 2.6.5 imply that rotation about the origin and reflection about a line
through the origin in R2 have orthogonal matrices with determinants 1 and −1 respectively. In fact
they are the only such transformations of R2. We have more to say about this in Section 8.2.

Adjugates

In Section 2.4 we defined the adjugate of a 2 × 2 matrix A =

[
a b
c d

]
to be adj (A) =

[
d −b

−c a

]
.

Then we verified that A(adj A) = (det A)I = (adj A)A and hence that, if det A 6= 0, A−1 = 1
det A adj A.

We are now able to define the adjugate of an arbitrary square matrix and to show that this formula
for the inverse remains valid (when the inverse exists).

Recall that the (i, j)-cofactor ci j(A) of a square matrix A is a number defined for each position
(i, j) in the matrix. If A is a square matrix, the cofactor matrix of A is defined to be the matrix[
ci j(A)

]
whose (i, j)-entry is the (i, j)-cofactor of A.
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Definition 3.3 Adjugate of a Matrix

The adjugate4of A, denoted adj (A), is the transpose of this cofactor matrix; in symbols,

adj (A) =
[
ci j(A)

]T

This agrees with the earlier definition for a 2×2 matrix A as the reader can verify.

Example 3.2.6

Compute the adjugate of A =

 1 3 −2
0 1 5

−2 −6 7

 and calculate A(adj A) and (adj A)A.

Solution. We first find the cofactor matrix.

 c11(A) c12(A) c13(A)
c21(A) c22(A) c23(A)
c31(A) c32(A) c33(A)

=



∣∣∣∣ 1 5
−6 7

∣∣∣∣ −
∣∣∣∣ 0 5
−2 7

∣∣∣∣ ∣∣∣∣ 0 1
−2 −6

∣∣∣∣
−
∣∣∣∣ 3 −2
−6 7

∣∣∣∣ ∣∣∣∣ 1 −2
−2 7

∣∣∣∣ −
∣∣∣∣ 1 3
−2 −6

∣∣∣∣∣∣∣∣ 3 −2
1 5

∣∣∣∣ −
∣∣∣∣ 1 −2

0 5

∣∣∣∣ ∣∣∣∣ 1 3
0 1

∣∣∣∣


=

 37 −10 2
−9 3 0
17 −5 1


Then the adjugate of A is the transpose of this cofactor matrix.

adj A =

 37 −10 2
−9 3 0
17 −5 1

T

=

 37 −9 17
−10 3 −5

2 0 1


The computation of A(adj A) gives

A(adj A) =

 1 3 −2
0 1 5

−2 −6 7

 37 −9 17
−10 3 −5

2 0 1

=

 3 0 0
0 3 0
0 0 3

= 3I

and the reader can verify that also (adj A)A = 3I. Hence, analogy with the 2×2 case would
indicate that det A = 3; this is, in fact, the case.

The relationship A(adj A) = (det A)I holds for any square matrix A. To see why this is so,

4This is also called the classical adjoint of A, but the term “adjoint” has another meaning.
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consider the general 3×3 case. Writing ci j(A) = ci j for short, we have

adj A =

 c11 c12 c13
c21 c22 c23
c31 c32 c33

T

=

 c11 c21 c31
c12 c22 c32
c13 c23 c33


If A =

[
ai j

]
in the usual notation, we are to verify that A(adj A) = (det A)I. That is,

A(adj A) =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 c11 c21 c31
c12 c22 c32
c13 c23 c33

=

 det A 0 0
0 det A 0
0 0 det A


Consider the (1, 1)-entry in the product. It is given by a11c11 +a12c12 +a13c13, and this is just the
cofactor expansion of det A along the first row of A. Similarly, the (2, 2)-entry and the (3, 3)-entry
are the cofactor expansions of det A along rows 2 and 3, respectively.

So it remains to be seen why the off-diagonal elements in the matrix product A(adj A) are all
zero. Consider the (1, 2)-entry of the product. It is given by a11c21 + a12c22 + a13c23. This looks
like the cofactor expansion of the determinant of some matrix. To see which, observe that c21, c22,
and c23 are all computed by deleting row 2 of A (and one of the columns), so they remain the same
if row 2 of A is changed. In particular, if row 2 of A is replaced by row 1, we obtain

a11c21 +a12c22 +a13c23 = det

 a11 a12 a13
a11 a12 a13
a31 a32 a33

= 0

where the expansion is along row 2 and where the determinant is zero because two rows are identical.
A similar argument shows that the other off-diagonal entries are zero.

This argument works in general and yields the first part of Theorem 3.2.4. The second assertion
follows from the first by multiplying through by the scalar 1

det A .

Theorem 3.2.4: Adjugate Formula

If A is any square matrix, then

A(adj A) = (det A)I = (adj A)A

In particular, if det A 6= 0, the inverse of A is given by

A−1 = 1
det A adj A

It is important to note that this theorem is not an efficient way to find the inverse of the matrix
A. For example, if A were 10× 10, the calculation of adj A would require computing 102 = 100
determinants of 9×9 matrices! On the other hand, the matrix inversion algorithm would find A−1

with about the same effort as finding det A. Clearly, Theorem 3.2.4 is not a practical result: its
virtue is that it gives a formula for A−1 that is useful for theoretical purposes.
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Example 3.2.7

Find the (2, 3)-entry of A−1 if A =

 2 1 3
5 −7 1
3 0 −6

.

Solution. First compute

det A =

∣∣∣∣∣∣
2 1 3
5 −7 1
3 0 −6

∣∣∣∣∣∣=
∣∣∣∣∣∣

2 1 7
5 −7 11
3 0 0

∣∣∣∣∣∣= 3
∣∣∣∣ 1 7
−7 11

∣∣∣∣= 180

Since A−1 = 1
det A adj A = 1

180

[
ci j(A)

]T , the (2, 3)-entry of A−1 is the (3, 2)-entry of the

matrix 1
180

[
ci j(A)

]
; that is, it equals 1

180c32(A) = 1
180

(
−
∣∣∣∣ 2 3

5 1

∣∣∣∣)= 13
180 .

Example 3.2.8

If A is n×n, n ≥ 2, show that det (adj A) = (det A)n−1.

Solution. Write d = det A; we must show that det (adj A) = dn−1. We have A(adj A) = dI by
Theorem 3.2.4, so taking determinants gives d det (adj A) = dn. Hence we are done if d 6= 0.
Assume d = 0; we must show that det (adj A) = 0, that is, adj A is not invertible. If A 6= 0,
this follows from A(adj A) = dI = 0; if A = 0, it follows because then adj A = 0.

Cramer’s Rule

Theorem 3.2.4 has a nice application to linear equations. Suppose

Ax = b

is a system of n equations in n variables x1, x2, . . . , xn. Here A is the n×n coefficient matrix, and
x and b are the columns

x =


x1
x2
...

xn

 and b =


b1
b2
...

bn


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of variables and constants, respectively. If det A 6= 0, we left multiply by A−1 to obtain the solution
x = A−1b. When we use the adjugate formula, this becomes

x1
x2
...

xn

= 1
det A(adj A)b

= 1
det A


c11(A) c21(A) · · · cn1(A)
c12(A) c22(A) · · · cn2(A)

... ... ...
c1n(A) c2n(A) · · · cnn(A)




b1
b2
...

bn


Hence, the variables x1, x2, . . . , xn are given by

x1 =
1

det A [b1c11(A)+b2c21(A)+ · · ·+bncn1(A)]

x2 =
1

det A [b1c12(A)+b2c22(A)+ · · ·+bncn2(A)]
... ...

xn =
1

det A [b1c1n(A)+b2c2n(A)+ · · ·+bncnn(A)]

Now the quantity b1c11(A)+b2c21(A)+ · · ·+bncn1(A) occurring in the formula for x1 looks like the
cofactor expansion of the determinant of a matrix. The cofactors involved are c11(A), c21(A), . . . , cn1(A),
corresponding to the first column of A. If A1 is obtained from A by replacing the first column of A
by b, then ci1(A1) = ci1(A) for each i because column 1 is deleted when computing them. Hence,
expanding det (A1) by the first column gives

det A1 = b1c11(A1)+b2c21(A1)+ · · ·+bncn1(A1)

= b1c11(A)+b2c21(A)+ · · ·+bncn1(A)
= (det A)x1

Hence, x1 =
det A1
det A and similar results hold for the other variables.

Theorem 3.2.5: Cramer’s Rule5

If A is an invertible n×n matrix, the solution to the system

Ax = b

of n equations in the variables x1, x2, . . . , xn is given by

x1 =
det A1
det A , x2 =

det A2
det A , · · · , xn =

det An
det A

where, for each k, Ak is the matrix obtained from A by replacing column k by b.

5Gabriel Cramer (1704–1752) was a Swiss mathematician who wrote an introductory work on algebraic curves.
He popularized the rule that bears his name, but the idea was known earlier.
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Example 3.2.9

Find x1, given the following system of equations.

5x1 + x2 − x3 = 4
9x1 + x2 − x3 = 1
x1 − x2 + 5x3 = 2

Solution. Compute the determinants of the coefficient matrix A and the matrix A1
obtained from it by replacing the first column by the column of constants.

det A = det

 5 1 −1
9 1 −1
1 −1 5

=−16

det A1 = det

 4 1 −1
1 1 −1
2 −1 5

= 12

Hence, x1 =
det A1
det A =−3

4 by Cramer’s rule.

Cramer’s rule is not an efficient way to solve linear systems or invert matrices. True, it enabled
us to calculate x1 here without computing x2 or x3. Although this might seem an advantage, the
truth of the matter is that, for large systems of equations, the number of computations needed to
find all the variables by the gaussian algorithm is comparable to the number required to find one of
the determinants involved in Cramer’s rule. Furthermore, the algorithm works when the matrix of
the system is not invertible and even when the coefficient matrix is not square. Like the adjugate
formula, then, Cramer’s rule is not a practical numerical technique; its virtue is theoretical.

Polynomial Interpolation

Example 3.2.10

0 5 10 12 15

2

4

6

(5, 3)

(10, 5)
(15, 6)

Diameter

Age

A forester
wants to estimate the age (in years) of a tree by measuring the
diameter of the trunk (in cm). She obtains the following data:

Tree 1 Tree 2 Tree 3
Trunk Diameter 5 10 15
Age 3 5 6

Estimate the age of a tree with a trunk diameter of 12 cm.

Solution.
The forester decides to “fit” a quadratic polynomial

p(x) = r0 + r1x+ r2x2
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to the data, that is choose the coefficients r0, r1, and r2 so that p(5) = 3, p(10) = 5, and
p(15) = 6, and then use p(12) as the estimate. These conditions give three linear equations:

r0 + 5r1 + 25r2 = 3
r0 + 10r1 + 100r2 = 5
r0 + 15r1 + 225r2 = 6

The (unique) solution is r0 = 0, r1 =
7

10 , and r2 =− 1
50 , so

p(x) = 7
10x− 1

50x2 = 1
50x(35− x)

Hence the estimate is p(12) = 5.52.

As in Example 3.2.10, it often happens that two variables x and y are related but the actual
functional form y= f (x) of the relationship is unknown. Suppose that for certain values x1, x2, . . . , xn
of x the corresponding values y1, y2, . . . , yn are known (say from experimental measurements). One
way to estimate the value of y corresponding to some other value a of x is to find a polynomial6

p(x) = r0 + r1x+ r2x2 + · · ·+ rn−1xn−1

that “fits” the data, that is p(xi) = yi holds for each i = 1, 2, . . . , n. Then the estimate for y is p(a).
As we will see, such a polynomial always exists if the xi are distinct.

The conditions that p(xi) = yi are

r0 + r1x1 + r2x2
1 + · · ·+ rn−1xn−1

1 = y1

r0 + r1x2 + r2x2
2 + · · ·+ rn−1xn−1

2 = y2
... ... ... ... ...

r0 + r1xn + r2x2
n + · · ·+ rn−1xn−1

n = yn

In matrix form, this is 
1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2... ... ... ...
1 xn x2

n · · · xn−1
n




r0
r1
...

rn−1

=


y1
y2
...

yn

 (3.3)

It can be shown (see Theorem 3.2.7) that the determinant of the coefficient matrix equals the
product of all terms (xi − x j) with i > j and so is nonzero (because the xi are distinct). Hence the
equations have a unique solution r0, r1, . . . , rn−1. This proves

6A polynomial is an expression of the form a0 + a1x+ a2x2 + · · ·+ anxn where the ai are numbers and x is a
variable. If an 6= 0, the integer n is called the degree of the polynomial, and an is called the leading coefficient. See
Appendix ??.
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Theorem 3.2.6
Let n data pairs (x1, y1), (x2, y2), . . . , (xn, yn) be given, and assume that the xi are distinct.
Then there exists a unique polynomial

p(x) = r0 + r1x+ r2x2 + · · ·+ rn−1xn−1

such that p(xi) = yi for each i = 1, 2, . . . , n.

The polynomial in Theorem 3.2.6 is called the interpolating polynomial for the data.
We conclude by evaluating the determinant of the coefficient matrix in Equation 3.3. If a1, a2, . . . , an

are numbers, the determinant

det


1 a1 a2

1 · · · an−1
1

1 a2 a2
2 · · · an−1

2
1 a3 a2

3 · · · an−1
3... ... ... ...

1 an a2
n · · · an−1

n


is called a Vandermonde determinant.7 There is a simple formula for this determinant. If n = 2,
it equals (a2 −a1); if n = 3, it is (a3 −a2)(a3 −a1)(a2 −a1) by Example 3.1.8. The general result is
the product

∏
1≤ j<i≤n

(ai −a j)

of all factors (ai −a j) where 1 ≤ j < i ≤ n. For example, if n = 4, it is

(a4 −a3)(a4 −a2)(a4 −a1)(a3 −a2)(a3 −a1)(a2 −a1)

Theorem 3.2.7
Let a1, a2, . . . , an be numbers where n ≥ 2. Then the corresponding Vandermonde
determinant is given by

det


1 a1 a2

1 · · · an−1
1

1 a2 a2
2 · · · an−1

2
1 a3 a2

3 · · · an−1
3... ... ... ...

1 an a2
n · · · an−1

n

= ∏
1≤ j<i≤n

(ai −a j)

Proof. We may assume that the ai are distinct; otherwise both sides are zero. We proceed by
induction on n ≥ 2; we have it for n = 2, 3. So assume it holds for n−1. The trick is to replace an

7Alexandre Théophile Vandermonde (1735–1796) was a French mathematician who made contributions to the
theory of equations.
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by a variable x, and consider the determinant

p(x) = det


1 a1 a2

1 · · · an−1
1

1 a2 a2
2 · · · an−1

2... ... ... ...
1 an−1 a2

n−1 · · · an−1
n−1

1 x x2 · · · xn−1


Then p(x) is a polynomial of degree at most n− 1 (expand along the last row), and p(ai) = 0 for
each i = 1, 2, . . . , n− 1 because in each case there are two identical rows in the determinant. In
particular, p(a1) = 0, so we have p(x) = (x− a1)p1(x) by the factor theorem (see Appendix ??).
Since a2 6= a1, we obtain p1(a2) = 0, and so p1(x) = (x−a2)p2(x). Thus p(x) = (x−a1)(x−a2)p2(x).
As the ai are distinct, this process continues to obtain

p(x) = (x−a1)(x−a2) · · ·(x−an−1)d (3.4)

where d is the coefficient of xn−1 in p(x). By the cofactor expansion of p(x) along the last row we
get

d = (−1)n+n det


1 a1 a2

1 · · · an−2
1

1 a2 a2
2 · · · an−2

2... ... ... ...
1 an−1 a2

n−1 · · · an−2
n−1


Because (−1)n+n = 1 the induction hypothesis shows that d is the product of all factors (ai − a j)
where 1 ≤ j < i ≤ n−1. The result now follows from Equation 3.4 by substituting an for x in p(x).

Proof of Theorem 3.2.1. If A and B are n×n matrices we must show that

det (AB) = det A det B (3.5)

Recall that if E is an elementary matrix obtained by doing one row operation to In, then doing that
operation to a matrix C (Lemma 2.5.1) results in EC. By looking at the three types of elementary
matrices separately, Theorem 3.1.2 shows that

det (EC) = det E det C for any matrix C (3.6)

Thus if E1, E2, . . . , Ek are all elementary matrices, it follows by induction that

det (Ek · · ·E2E1C) = det Ek · · · det E2 det E1 det C for any matrix C (3.7)

Lemma. If A has no inverse, then det A = 0.
Proof. Let A → R where R is reduced row-echelon, say En · · ·E2E1A = R. Then R has a row of

zeros by Part (4) of Theorem 2.4.5, and hence det R = 0. But then Equation 3.7 gives det A = 0
because det E 6= 0 for any elementary matrix E. This proves the Lemma.

Now we can prove Equation 3.5 by considering two cases.
Case 1. A has no inverse. Then AB also has no inverse (otherwise A[B(AB)−1] = I) so A is invertible
by Corollary 2.4.2 to Theorem 2.4.5. Hence the above Lemma (twice) gives

det (AB) = 0 = 0 det B = det A det B
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proving Equation 3.5 in this case.
Case 2. A has an inverse. Then A is a product of elementary matrices by Theorem 2.5.2, say
A = E1E2 · · ·Ek. Then Equation 3.7 with C = I gives

det A = det (E1E2 · · ·Ek) = det E1 det E2 · · · det Ek

But then Equation 3.7 with C = B gives

det (AB) = det [(E1E2 · · ·Ek)B] = det E1 det E2 · · · det Ek det B = det A det B

and Equation 3.5 holds in this case too.

Exercises for 3.2

Exercise 3.2.1 Find the adjugate of each of the
following matrices. 5 1 3

−1 2 3
1 4 8

a)

 1 −1 2
3 1 0
0 −1 1

b)

 1 0 −1
−1 1 0

0 −1 1

c) 1
3

 −1 2 2
2 −1 2
2 2 −1

d)

b.

 1 −1 −2
−3 1 6
−3 1 4



d. 1
3

 −1 2 2
2 −1 2
2 2 −1

= A

Exercise 3.2.2 Use determinants to find which
real values of c make each of the following matrices
invertible. 1 0 3

3 −4 c
2 5 8

a)

 0 c −c
−1 2 1

c −c c

b)

 c 1 0
0 2 c

−1 c 5

c)

 4 c 3
c 2 c
5 c 4

d)

 1 2 −1
0 −1 c
2 c 1

e)

 1 c −1
c 1 1
0 1 c

f)

b. c 6= 0

d. any c

f. c 6=−1

Exercise 3.2.3 Let A, B, and C denote n×n ma-
trices and assume that det A = −1, det B = 2, and
det C = 3. Evaluate:

det (A3BCT B−1)a) det (B2C−1AB−1CT )b)

b. −2

Exercise 3.2.4 Let A and B be invertible n× n
matrices. Evaluate:

det (B−1AB)a) det (A−1B−1AB)b)

b. 1
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Exercise 3.2.5 If A is 3× 3 and det (2A−1) = −4
and det (A3(B−1)T ) =−4, find det A and det B.

Exercise 3.2.6 Let A =

 a b c
p q r
u v w

 and assume

that det A = 3. Compute:

a. det (2B−1) where B =

 4u 2a −p
4v 2b −q
4w 2c −r



b. det (2C−1) where C =

 2p −a+u 3u
2q −b+ v 3v
2r −c+w 3w



b. 4
9

Exercise 3.2.7 If det
[

a b
c d

]
=−2 calculate:

a. det

 2 −2 0
c+1 −1 2a
d −2 2 2b



b. det

 2b 0 4d
1 2 −2

a+1 2 2(c−1)


c. det (3A−1) where A =

[
3c a+ c
3d b+d

]

b. 16

Exercise 3.2.8 Solve each of the following by
Cramer’s rule:

2x+ y= 1
3x+ 7y=−2

a) 3x+ 4y= 9
2x− y=−1

b)

5x+ y− z=−7
2x− y− 2z= 6
3x + 2z=−7

c)
4x− y+ 3z= 1
6x+ 2y− z= 0
3x+ 3y+ 2z=−1

d)

b. 1
11

[
5

21

]

d. 1
79

 12
−37
−2


Exercise 3.2.9 Use Theorem 3.2.4 to find the
(2, 3)-entry of A−1 if:

A =

 3 2 1
1 1 2

−1 2 1

a) A =

 1 2 −1
3 1 1
0 4 7

b)

b. 4
51

Exercise 3.2.10 Explain what can be said about
det A if:

A2 = Aa) A2 = Ib)
A3 = Ac) PA = P and P is in-

vertible
d)

A2 = uA and A is n×
n

e) A = −AT and A is
n×n

f)

A2 + I = 0 and A is
n×n

g)

b. det A = 1, −1

d. det A = 1

f. det A = 0 if n is odd; nothing can be said if n
is even

Exercise 3.2.11 Let A be n×n. Show that uA =
(uI)A, and use this with Theorem 3.2.1 to deduce the
result in Theorem 3.1.3: det (uA) = un det A.

Exercise 3.2.12 If A and B are n× n matrices, if
AB = −BA, and if n is odd, show that either A or B
has no inverse.

Exercise 3.2.13 Show that det AB = det BA holds
for any two n×n matrices A and B.

Exercise 3.2.14 If Ak = 0 for some k ≥ 1, show
that A is not invertible.

Exercise 3.2.15 If A−1 = AT , describe the cofactor
matrix of A in terms of A.
dA where d = det A
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Exercise 3.2.16 Show that no 3×3 matrix A ex-
ists such that A2 + I = 0. Find a 2×2 matrix A with
this property.

Exercise 3.2.17 Show that det (A+BT )= det (AT +
B) for any n×n matrices A and B.

Exercise 3.2.18 Let A and B be invertible n×n ma-
trices. Show that det A = det B if and only if A =UB
where U is a matrix with det U = 1.

Exercise 3.2.19 For each of the matrices in Exer-
cise 2, find the inverse for those values of c for which
it exists.

b. 1
c

 1 0 1
0 c 1

−1 c 1

 , c 6= 0

d. 1
2

 8− c2 −c c2 −6
c 1 −c

c2 −10 c 8− c2



f. 1
c3+1

 1− c c2 +1 −c−1
c2 −c c+1
−c 1 c2 −1

 , c 6=−1

Exercise 3.2.20 In each case either prove the
statement or give an example showing that it is false:

a. If adj A exists, then A is invertible.

b. If A is invertible and adj A = A−1, then det A =
1.

c. det (AB) = det (BT A).

d. If det A 6= 0 and AB = AC, then B =C.

e. If AT =−A, then det A =−1.

f. If adj A = 0, then A = 0.

g. If A is invertible, then adj A is invertible.

h. If A has a row of zeros, so also does adj A.

i. det (AT A)> 0 for all square matrices A.

j. det (I +A) = 1+ det A.

k. If AB is invertible, then A and B are invertible.

l. If det A = 1, then adj A = A.

m. If A is invertible and det A = d, then adj A =
dA−1.

b. T. det AB = det A det B = det B det A = det BA.

d. T. det A 6= 0 means A−1 exists, so AB = AC im-
plies that B =C.

f. F. If A =

 1 1 1
1 1 1
1 1 1

 then adj A = 0.

h. F. If A =

[
1 1
0 0

]
then adj A =

[
0 −1
0 1

]

j. F. If A =

[
−1 1

1 −1

]
then det (I + A) = −1

but 1+ det A = 1.

l. F. If A =

[
1 1
0 1

]
then det A = 1 but adj A =[

1 −1
0 1

]
6= A

Exercise 3.2.21 If A is 2×2 and det A = 0, show
that one column of A is a scalar multiple of the
other. [Hint: Definition 2.5 and Part (2) of The-
orem 2.4.5.]

Exercise 3.2.22 Find a polynomial p(x) of degree
2 such that:

a. p(0) = 2, p(1) = 3, p(3) = 8

b. p(0) = 5, p(1) = 3, p(2) = 5

b. 5−4x+2x2.

Exercise 3.2.23 Find a polynomial p(x) of degree
3 such that:

a. p(0) = p(1) = 1, p(−1) = 4, p(2) =−5

b. p(0) = p(1) = 1, p(−1) = 2, p(−2) =−3

b. 1− 5
3 x+ 1

2 x2 + 7
6 x3
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Exercise 3.2.24 Given the following data pairs,
find the interpolating polynomial of degree 3 and es-
timate the value of y corresponding to x = 1.5.

a. (0, 1), (1, 2), (2, 5), (3, 10)

b. (0, 1), (1, 1.49), (2, −0.42), (3, −11.33)

c. (0, 2), (1, 2.03), (2, −0.40), (−1, 0.89)

b. 1−0.51x+2.1x2 −1.1x3;1.25, so y = 1.25

Exercise 3.2.25 If A =

 1 a b
−a 1 c
−b −c 1

 show that

det A = 1+a2 +b2 +c2. Hence, find A−1 for any a, b,
and c.

Exercise 3.2.26

a. Show that A =

 a p q
0 b r
0 0 c

 has an inverse if

and only if abc 6= 0, and find A−1 in that case.

b. Show that if an upper triangular matrix is in-
vertible, the inverse is also upper triangular.

b. Use induction on n where A is n × n. It is
clear if n = 1. If n > 1, write A =

[
a X
0 B

]
in

block form where B is (n−1)× (n−1). Then

A−1 =

[
a−1 −a−1XB−1

0 B−1

]
, and this is upper

triangular because B is upper triangular by in-
duction.

Exercise 3.2.27 Let A be a matrix each of whose
entries are integers. Show that each of the following
conditions implies the other.

1. A is invertible and A−1 has integer entries.

2. det A = 1 or −1.

Exercise 3.2.28 If A−1 =

 3 0 1
0 2 3
3 1 −1

 find adj A.

− 1
21

 3 0 1
0 2 3
3 1 −1


Exercise 3.2.29 If A is 3× 3 and det A = 2, find
det (A−1 +4 adj A).

Exercise 3.2.30 Show that det
[

0 A
B X

]
=

det A det B when A and B are 2×2. What if A and B

are 3×3? [Hint: Block multiply by
[

0 I
I 0

]
.]

Exercise 3.2.31 Let A be n×n, n ≥ 2, and assume
one column of A consists of zeros. Find the possible
values of rank (adj A).

Exercise 3.2.32 If A is 3×3 and invertible, com-
pute det (−A2(adj A)−1).

Exercise 3.2.33 Show that adj (uA) = un−1 adj A
for all n×n matrices A.

Exercise 3.2.34 Let A and B denote invertible
n×n matrices. Show that:

a. adj (adj A) = (det A)n−2A (here n ≥ 2) [Hint:
See Example 3.2.8.]

b. adj (A−1) = (adj A)−1

c. adj (AT ) = (adj A)T

d. adj (AB) = (adj B)(adj A) [Hint: Show that
AB adj (AB) = AB adj B adj A.]

b. Have (adj A)A = (det A)I; so taking inverses,
A−1 · (adj A)−1 = 1

det A I. On the other hand,
A−1 adj (A−1) = det (A−1)I = 1

det A I. Compar-
ison yields A−1(adj A)−1 = A−1 adj (A−1), and
part (b) follows.

d. Write det A = d, det B = e. By the
adjugate formula AB adj (AB) = deI, and
AB adj B adj A = A[eI] adj A = (eI)(dI) = deI.
Done as AB is invertible.
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